Proton range verification in inhomogeneous tissue: Treatment planning system vs. measurement vs. Monte Carlo simulation
نویسندگان
چکیده
In particle radiotherapy, range uncertainty is an important issue that needs to be overcome. Because high-dose conformality can be achieved using a particle beam, a small uncertainty can affect tumor control or cause normal-tissue complications. From this perspective, the treatment planning system (TPS) must be accurate. However, there is a well-known inaccuracy regarding dose computation in heterogeneous media. This means that verifying the uncertainty level is one of the prerequisites for TPS commissioning. We evaluated the range accuracy of the dose computation algorithm implemented in a commercial TPS, and Monte Carlo (MC) simulation against measurement using a CT calibration phantom. A treatment plan was produced for eight different materials plugged into a phantom, and two-dimensional doses were measured using a chamber array. The measurement setup and beam delivery were simulated by MC code. For an infinite solid water phantom, the gamma passing rate between the measurement and TPS was 97.7%, and that between the measurement and MC was 96.5%. However, gamma passing rates between the measurement and TPS were 49.4% for the lung and 67.8% for bone, and between the measurement and MC were 85.6% for the lung and 100.0% for bone tissue. For adipose, breast, brain, liver, and bone mineral, the gamma passing rates computed by TPS were 91.7%, 90.6%, 81.7%, 85.6%, and 85.6%, respectively. The gamma passing rates for MC for adipose, breast, brain, liver, and bone mineral were 100.0%, 97.2%, 95.0%, 98.9%, and 97.8%, respectively. In conclusion, the described procedure successfully evaluated the allowable range uncertainty for TPS commissioning. The TPS dose calculation is inefficient in heterogeneous media with large differences in density, such as lung or bone tissue. Therefore, the limitations of TPS in heterogeneous media should be understood and applied in clinical practice.
منابع مشابه
Evaluation of the RtDosePlan Treatment Planning System using Radiochromic Film and Monte Carlo Simulation
Introduction: GafChromic EBT films are one of the self-developing and modern films commercially available for dosimetric verification of treatment planning systems (TPSs). Their high spatial resolution, low energy dependence and near-tissue equivalence make them suitable for verification of dose distributions in radiation therapy. This study was designed to evaluate the dosimetric parameters of...
متن کاملEvaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملEvaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation
Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...
متن کاملInvestigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study
Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...
متن کاملDose Assessment of Eye and Its Components in Proton Therapy by Monte Carlo Method
Introduction Proton therapy is used to treat malignant tumors such as melanoma inside the eye. Proton particles are adjusted according to various parameters such as tumor size and position and patient’s distance from the proton source. The purpose of this study was to assess absorbed doses in eyes and various tumors found in the area of sclera and choroid and the adjacent tissues in radiotherap...
متن کامل